

ESC – Software Solutions

Quick Start Guide

Getting Started with

X-NUCLEO-SPINAND-TOSH
Based on TC58CVG2S0HRAIF

Revision 1.0, 10.04.2017

 arrow.com | +49 (0) 6102 50300 2

©2017 by ARROW

All rights reserved. No part of this manual shall be reproduced, stored in a retrieval system, or
transmitted by any means, electronic, mechanical, photocopying, desktop publishing, recording,
or otherwise, without written permission from the publisher. No patent liability is assumed with
respect to the use of the information contained herein. While every precaution has been taken
in the preparation of this document, the publisher and author assume no responsibility for errors
or omissions. Neither is any liability assumed for damages resulting from the use of the
information contained herein. All terms mentioned in this manual that are known to be
trademarks or service marks are listed below. In addition, terms suspected of being trademarks
or service marks have been appropriately capitalized. ARROW cannot attest to the accuracy of
this information. Use of a term in this document should not be regarded as affecting the validity
of any trademark or service mark.

 arrow.com | +49 (0) 6102 50300 3

Revision History

Revision, Date Editor Subject (major changes)

Revision 1.0,
10.04.2017

Quang Hai Nguyen Initial release

 arrow.com | +49 (0) 6102 50300 4

Table of Contents

Revision History ... 3

Table of Contents ... 4

List of Figures .. 5

Introduction .. 6

Requirements for the demo .. 6

Running the demo .. 6

Creating the demo from scratch ... 6

Running the demo .. 7

Flashing the board with STM32 – ST LINK Utility ... 7

Running the Demo ... 9

Getting started from the scratch ... 11

Getting started with CubeMX .. 11

Editing the code .. 18

 arrow.com | +49 (0) 6102 50300 5

List of Figures

Figure 1: Folder structure ... 6

Figure 2: Hardware for running the demo .. 7

Figure 3: Connect the board to STM32 ST-LINK Utility ... 7

Figure 4: Loading the binary into the STM32 ST-LINK Utility ... 8

Figure 5: Programming the board with STM32 ST-LINK Utility .. 9

Figure 6: Terminal Program configuration .. 9

Figure 7: Running the demo 1 .. 10

Figure 8: Running the demo 2 .. 10

Figure 9: Running the demo 3 .. 10

Figure 10: Board selection for new project ... 11

Figure 11: Clearing the pinout .. 12

Figure 12: SPI configuration ... 12

Figure 13: TIM1 configuration .. 13

Figure 14: USART2 configuration .. 13

Figure 15: Setting the pins ... 13

Figure 16: Setting the clock .. 14

Figure 17: Configuration Tab ... 14

Figure 18: Setting for SPI1 ... 15

Figure 19: Setting for USART 2 ... 15

Figure 20: Setting for TIM1 .. 16

Figure 21: Setting for NVIC .. 16

Figure 22: Project setting 1 .. 17

Figure 23: Project setting 2 .. 17

Figure 24: Generate project 1 .. 18

Figure 25: Generate Project 2 .. 18

Figure 26: Adding additional source file ... 18

Figure 27: Include and define section .. 19

Figure 28: Private variables section ... 19

Figure 29: Function prototype section .. 20

Figure 30: Peripherals initialize .. 20

Figure 31: Check ID and check bad blocks .. 20

Figure 32: Enable using printf .. 21

Figure 33: CheckBadBlock function ... 21

Figure 34: FlashTest function ... 22

Figure 35: Call back function for push button ... 23

Figure 36: Build and Download .. 23

file:///C:/MyFiles/SoftwareTeam/Technologies_Boards/Toshiba%20Flash_Arrow/Project/Document/Getting%20Started%20witn%20Toshiba%20NAND%20Flash.docx%23_Toc479667021

 arrow.com | +49 (0) 6102 50300 6

Introduction

This document provides the information about the hardware and software requirements for

running the demo. It also guides the user how to run the X-NUCLEO-SPINAND-TOSH demo and

how to create one from scratch.

Folder structure

Requirements for the demo

Running the demo

 STM32F401 Nucleo kit

 X-NUCLEO-SPINAND-TOSH

 Mini USB cable

 STM32 – ST LINK Utility

 Terminal Program (HTerm, TeraTerm, Putty…)

Creating the demo from scratch

 STM32CubeMX

 Preferred IDE (Keil, IAR, System Workbench)

Figure 1: Folder structure

Datasheet, user guide, configuration…

HTerm, terminal software

Source and header file for the Flash

Example project with Keil, IAR
and System Workbench

Binary file

 arrow.com | +49 (0) 6102 50300 7

Running the demo

Flashing the board with STM32 – ST LINK Utility

Plug the X_NUCLEO onto the STM32F4 Nucleo and power it with the mini USB cable

Figure 2: Hardware for running the demo

Open STM32 ST-Link Utility and connect it to the board by pressing the connect button or go to

Connect  Target.

Figure 3: Connect the board to STM32 ST-LINK Utility

 arrow.com | +49 (0) 6102 50300 8

Open the binary file by clicking File  Open File… then navigate to the folder which the binary

file is stored (Figure 1) or simply drag and drop the file into the program.

Binary find can be found in the Binary folder (Figure 1)

Figure 4: Loading the binary into the STM32 ST-LINK Utility

Finally the board can be programmed by clicking Target  Program & Verify  Start or clicking

on the Program Verify button, then press start.

When the program is finished, the console will show the complete message as below and the

board is ready.

 arrow.com | +49 (0) 6102 50300 9

Figure 5: Programming the board with STM32 ST-LINK Utility

Running the Demo

Open the preferred Terminal program. HTerm is used in this document and can be found in the

Terminal Software folder. Configure it as following (Note that the port is different on your

computer):

Figure 6: Terminal Program configuration

By pressing Connect button on HTerm and the reset button on the controller (black one), there

will be a message displayed to show the address of the flash, also running the process of checking

bad blocks. Please note that, every memory is shipped with some bad blocks, and the bad blocks

are different from one memory to the others.

In this example, bad blocks occur at block #3, #1536, #1537, #1561, and #1789.

 arrow.com | +49 (0) 6102 50300 10

Figure 7: Running the demo 1

Then press the blue button to continue the demo. The controller will check if the current block is

bad block, then it erases the data inside the block and write new data to the first page of each

block.

Figure 8: Running the demo 2

Bad blocks at block number 3, 1536, 1537, 1561, 1789 are reported again during the run so they

are not overwritten.

Figure 9: Running the demo 3

 arrow.com | +49 (0) 6102 50300 11

Getting started from the scratch

Getting started with CubeMX

Open CubeMX and choose New Project.

In the new project window, go to Board Selector tab. In the field Type of Board, Nucleo64 is

chosen and in the MCU Series STM32F4 is picked. Finally in the Board Lists field, NUCLEO-

F401RE is chosen.

Figure 10: Board selection for new project

By pressing OK, a new window appears for project configuration. First thing need to be done is

cleaning the pinout. Choosing the option Pinout  Clear Pinouts

 arrow.com | +49 (0) 6102 50300 12

Figure 11: Clearing the pinout

In the Pinout tab, go to SPI1, we configure Mode as Full-Duplex Master, and Hardware NSS

Signal as Disable

Figure 12: SPI configuration

In the TIM1 configuration, we set Clock Source as Internal Clock to activate the General purpose

timer 1

 arrow.com | +49 (0) 6102 50300 13

Figure 13: TIM1 configuration

Next, we activate UART by going to USART2 configuration and set Mode as Asynchronous, and

Hardware Flow Control (RS232) as Disable

Figure 14: USART2 configuration

In the window on the right, configure pins PB6, PB4, PA9, PA8, PC7, and PB10 as GPIO_Output

and PC13 as GPIO_EXT13

Figure 15: Setting the pins

 arrow.com | +49 (0) 6102 50300 14

Move to Clock Configuration tab and make sure that the clock is set to 84MHz

Figure 16: Setting the clock

Move to Configuration tab. If we have configured everything correct, we should have the picture

as below

Figure 17: Configuration Tab

 arrow.com | +49 (0) 6102 50300 15

We start to configure the SPI by clicking in the tab SPI1. The setting in SPI1 tab is configured as

follow

Figure 18: Setting for SPI1

Then the USART2 is configured as followed:

Figure 19: Setting for USART 2

 arrow.com | +49 (0) 6102 50300 16

Here is the configuration for the timer:

Figure 20: Setting for TIM1

Finally, we go to NVIC tab to enable the interrupt for the push button.

Figure 21: Setting for NVIC

 arrow.com | +49 (0) 6102 50300 17

Then we go to Project  Setting to configure the final setting for our project before generating

it.

Figure 22: Project setting 1

In the Project Setting window, we name our project, choose a location to place it and, the most

important, choose the Toolchain/IDE to writing the code (in this case, Keil is used).

Figure 23: Project setting 2

Press Ok to close the window, then the project can be generated by choosing Project Generate

Code or clicking on the cog wheel button

 arrow.com | +49 (0) 6102 50300 18

Figure 24: Generate project 1

After the project is successfully generated, a window will pop up to ask for further action. From

here we can open the project in preferred IDE

Figure 25: Generate Project 2

Editing the code

Keil is used in this guide but it can be easily tailored to other IDE.

First thing we do is adding all the necessary source file into the project, which is

TC58_FPP_CMD.c in this case. Please also remember to add the header files to the Inc folder.

All the related source and header files can be found in the Toshiba_NAND_Flash Library folder.

Figure 26: Adding additional source file

First step is done, we go to the main.c and enter these lines between the /* USER CODE BEGIN

Includes */ and /* USER CODE END Includes */

 arrow.com | +49 (0) 6102 50300 19

Figure 27: Include and define section

Those codes include all the headers that needed. Next, we add all the needed variables to the

USER CODE BEGIN PV section.

Figure 28: Private variables section

Then we add the code for the function prototype to the USER CODE BEGIN PFP section. The

names of the functions self-explaining their purposes. FlashTest tests the operation of the flash

memory and SearchBadBlock looks for the bad block in the flash.

 arrow.com | +49 (0) 6102 50300 20

Figure 29: Function prototype section

Inside the main function, we navigate to the USER CODE BEGIN 2 section and add this block.

Figure 30: Peripherals initialize

The block above initializes the timer and SPI and also starts the timer. After that, we add the

following code to the application. This block reads the address of the flash memory and compares

it with the pre-defined one. If there is a mismatch, the program will print the error message and

go to the Error_Handler function, which is an infinite loop. If there is no error, it will run the

SearchBadBlock function.

Figure 31: Check ID and check bad blocks

Scrolling down to the USER CODE BEGIN 4, we add this block to the program. This block allows

us to use the printf function to write the data to the UART communication.

 arrow.com | +49 (0) 6102 50300 21

Figure 32: Enable using printf

Next thing we add is the body of the function SearchBadBlock. According to the datasheet,

information about the bad block is stored in column 0 or 4096 of the first and second page of the

block. Therefore, this function scans through the column 4096 of the first page of each block and

checks if they are equal to 0xFF. If it is not equal to 0xFF then we have a bad block.

Figure 33: CheckBadBlock function

 arrow.com | +49 (0) 6102 50300 22

After that we add the body of the function FlashTest. The main task of this function is erasing the

block, writing data into the first page of the first block, then reading the data again and comparing

them with the data it has written before to see if there is a match.

Figure 34: FlashTest function

 arrow.com | +49 (0) 6102 50300 23

From the code block above, the first thing the function FlashTest does is clearing the protection

bit. Then it will run through block by block, check if the block is bad block. If current block is not a

bad block, the function will generate random data, write it to the first page of the block, read the

data again and compare with the original one. If the data is matching, the function will move to

the next block. If the data is not matching, it will prompt an error message.

Finally we add the call back function for the push button. Whenever the button is pressed, the call

back function calls the FlashTest.

Figure 35: Call back function for push button

Now we can build our program, download it into the board and our application is ready to run.

Figure 36: Build and Download

 arrow.com | +49 (0) 6102 50300 24

THE END

