oo Power
m’ ‘ ‘ e il ‘ Management ‘

Components — EMEA

ESC — Software Solutions

Getting Started with
X-NUCLEO-SPINAND-TOSH

Based on TC58CVG2SOHRAIF
Revision 1.0, 10.04.2017

Quick Start Guide

©2017 by ARROW

All rights reserved. No part of this manual shall be reproduced, stored in a retrieval system, or
transmitted by any means, electronic, mechanical, photocopying, desktop publishing, recording,
or otherwise, without written permission from the publisher. No patent liability is assumed with
respect to the use of the information contained herein. While every precaution has been taken
in the preparation of this document, the publisher and author assume no responsibility for errors
or omissions. Neither is any liability assumed for damages resulting from the use of the
information contained herein. All terms mentioned in this manual that are known to be
trademarks or service marks are listed below. In addition, terms suspected of being trademarks
or service marks have been appropriately capitalized. ARROW cannot attest to the accuracy of
this information. Use of a term in this document should not be regarded as affecting the validity
of any trademark or service mark.

arrow.com | +49 (0) 6102 50300 /\mmlv | 2

Revision History

Revision, Date

Editor

Subject (major changes)

Revision 1.0,
10.04.2017

Quang Hai Nguyen

Initial release

arrow.com | +49 (0) 6102 50300 /\mmlv | 3

Table of Contents

REVISION HISTOIY ...ttt e e e e e e ettt e e e e e e e e e eeetaa e e e e e e e eeeetsbnn e e eeeeeeeeennes 3
IR o] (SN0 @ o1 (=T o] £ S 4
LIST OF FIQUIES ...ttt 5
T o o 18 Tox 1o o [P SSUPPPPPRNS 6
Requirements fOr the EMO..........ouiiii e e e e e e e e et eeeeeeeeaenees 6
U] T Te TRt 1= o (=T 1 T TSRS 6
Creating the demo from SCratChooii i e 6
U 1T Te TRt =0 1= 1 4T T U UUPPPPPNS 7
Flashing the board with STM32 — ST LINK ULIHITYuuuummiiiiiiiiiiiiiiiiiieee 7
RUNNING thE DIBIMO ...ttt 9
Getting started from the SCratChl.........ooooeiiie 11
Getting started With CUDEMX ... 11
Lo [T IR 4 aT= T oo Yo [SPPPPPN 18

arrow.com | +49 (0) 6102 50300 /\N\E\N | 4

List of

Figure 1:
Figure 2:
Figure 3:
Figure 4:
Figure 5:
Figure 6:
Figure 7:
Figure 8:
Figure 9:

Figure 10:
Figure 11:
Figure 12:
Figure 13:
Figure 14:
Figure 15:
Figure 16:
Figure 17:
Figure 18:
Figure 19:
Figure 20:
Figure 21:
Figure 22:
Figure 23:
Figure 24:
Figure 25:
Figure 26:
Figure 27:
Figure 28:
Figure 29:
Figure 30:
Figure 31:
Figure 32:
Figure 33:
Figure 34:
Figure 35:
Figure 36:

Figures
FOIORI STUCTUIEceiiiiiiiieeeieieeeee ettt e e e eeees 6
Hardware for running the demMOuiiiiii i 7
Connect the board to STM32 ST-LINK ULIlItYcceeeiiiiiiiiii e 7
Loading the binary into the STM32 ST-LINK Utility..........coooviiiiiiiiiiiiiiiiieeeeeeeee 8
Programming the board with STM32 ST-LINK Utilityccoovvviiiiiiiiiiiiiiiiieee 9
Terminal Program CONfIQUIAtION..........couuuuuiiiiie e 9
RUNNING the deMO L. ..ot e e e e e e e e e b e e e e e e eeeeanes 10
RUNNING the DEMO 2. 10
RUNNING the DEMO 3. ..ot 10
Board selection fOr NEW PrOJECT.........ouviiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeee e 11
Clearing the PINOUL........ ... 12
SP CONTIQUIATION. ...ttt 12
TIML CONFIQUIALION ..o 13
USART2 CONFIQUIALIONevviiiic et e e e e e e e 13
SEettiNg the PINS .o e e e e e e 13
SEettiNG the ClOCK.......ueeii e e e e e e e e e e 14
(70 1o T8 1= 11 [0 o N 1= 1o SR 14
SEttiNG FOr SPIL ... e e e e e e e 15
SettiNg fOr USART 2 ..ot e e e e e e e e e e ea e 15
Y= 11T T 0T S N 1Y i SR 16
SettiNg FOr NVIC ... e e e e e e e e e e e en e s 16
o o TT=Tod A=Y =Y 1] o OSSP 17
[(0T T=Tod Y=Y 1 1] o PP 17
(1=t 01T = 1 (N o 0] [T X A ST 18
GENEIALE PrOJECT 2. it 18
Adding additional SoUrce file ... 18
Include and defiNng SECHIONoeee i 19
Private variablesS SECHONcooie e 19
FUNCLION PrototyPe SECHIONceiiiiiiiiiiieieeeeeeeeeee ettt 20
Peripherals iNItIAlIZEooooiiiiiiiii e 20
Check ID and check bad BIOCKS..........coooiieiiiiii e 20
Enable uSing Printl ... 21
(O gT=Tod 1= F=To] =1 ool QU] ox 1o o [21
P TS IS o 10 o £ o 22
Call back function for push button............coooii i 23
Build @and DOWNIOAAuuuiiiieeeeee e e 23

arrow.com | +49 (0) 6102 50300 /\mmlv | 5

file:///C:/MyFiles/SoftwareTeam/Technologies_Boards/Toshiba%20Flash_Arrow/Project/Document/Getting%20Started%20witn%20Toshiba%20NAND%20Flash.docx%23_Toc479667021

Introduction

This document provides the information about the hardware and software requirements for
running the demo. It also guides the user how to run the X-NUCLEO-SPINAND-TOSH demo and
how to create one from scratch.

Folder structure

Document —— > Datasheet, user guide, configuration...
Terminal Software — » HTerm, terminal software
Toshba_NAND_Flash Library ——— % Source and header file for the Flash

4 | Toshiba_NAND_Flash_STM32F4 ———— Example project with Keil, IAR
settings and System Workbench

Binary » Binary file
Debug

Drivers

EWARM

Inc

MDK-ARM

Src

startup

Figure 1: Folder structure

Requirements for the demo

Running the demo

STM32F401 Nucleo kit
X-NUCLEO-SPINAND-TOSH

Mini USB cable

STM32 — ST LINK Utility

Terminal Program (HTerm, TeraTerm, Putty...)

Creating the demo from scratch

e STM32CubeMX
e Preferred IDE (Keil, IAR, System Workbench)

arrow.com | +49 (0) 6102 50300 /\mmlv | 6

Running the demo

Flashing the board with STM32 — ST LINK Utility

Plug the X_NUCLEO onto the STM32F4 Nucleo and power it with the mini USB cable

[
<
@
I
=3
@
N
o
>
Q
@
0
(%]
=

Five Years Out

Figure 2: Hardware for running the demo

Open STM32 ST-Link Utility and connect it to the board by pressing the connect button or go to
Connect = Target.

= - - | - - - Y
B sTM32STUNK Uty - b i s N B

File Edi ey Target ST-LINK External Loader Help

= = —
2d @k 95
Memory display Device
e—— Device ID
Address: 0x08000000 +w Size: 0x15AFC Data Width: 32 bits
Revision ID
Flash size
Device Memory | Binary File || LiveUpdate

[Device Memary

13:13:37 : [Flash_demo_F4.hex] opened successfully.
13:13:37 : [Flash_demo_F4.hex] checksum : 0x000F7825
13:13:38 : Binary File closed.

Figure 3: Connect the board to STM32 ST-LINK Utility

arrow.com | +49 (0) 6102 50300 I\MEVV | 7

Open the binary file by clicking File = Open File... then navigate to the folder which the binary
file is stored (Figure 1) or simply drag and drop the file into the program.

Binary find can be found in the Binary folder (Figure 1)

B, STM32 ST-LINK Utility = B X

File Edit View Target ST-LINK External Loader Help
Bd @92 @7

Memory display Device STM32F401xD/E
Device D (433
Revision D Rev Z
Flash size 512KBytes

Address: 0x08000000 w Size: 0x2996743 Data Width: 32 bits -

Device Memory @ 0x08000000 : | File : Toshiba_NAND_Flash_STM32F4.hex
[Toshiba_NAND_Flash_STM32FF]

Address 0 ‘4 ‘ 8 ‘ G |A5CI]
0x08000000 |20003E88 080001A9 080001B1 080001B3 ~>. ©...%...°%...
0x08000010 |080001B5 080001B7 030001B9 00000000 p...-...%.......
0x08000020 00000000 00000000 0OOOOO0O 08001B19 ..

mes

0x08000030 | 0800018D 00000000 08001A61 08001C3B (%a...;...
0x08000040 |080001C3 080001C3 080001C3 080001C3 A...A...A...A...
0x08000050 |080001C3 080001C3 080001C3 080001C3 A...A.. A.. A

0x08000060 |080001C3 080001C3 080001C3 080001C3 |A LLALLAL

« 1

10:20:23 : ST-LINK Firmware version : V2125M14

10:20:23 : Connected via SWD.

10:20:23 : SWD Frequency = 100 KHz.

10:20:23 : Connection mode : Connect Under Reset.

10:20:23 : Device ID:0x433

10:20:23 : Device flash Size : 512KBytes

10:20:23 : Device family :STM32F401xD/E

10:20:27 : [Toshiba_NAND_Flash_STM32F4.hex] opened successfully.
10:20:27 : [Toshiba_NAND_Flash_STM32F4.hex] checksum : 0x000E7744

m

Figure 4: Loading the binary into the STM32 ST-LINK Utility

Finally the board can be programmed by clicking Target = Program & Verify = Start or clicking
on the Program Verify button, then press start.

When the program is finished, the console will show the complete message as below and the
board is ready.

arrow.com | +49 (0) 6102 50300 /\N'_'_I\N | 8

File Edit View Target ST-LINK External Loader Help

=]~ i RCF A - R

Memory display Device STM32F401XD/E

Device D 0x433

Revision D RevZ

Flash size 512KBytes

Device Memory @ 0x08000000 : \Fne : Tush\ba_NAND_F\ash_STMEZF‘t.hexl [LiveUpdate
Target memory, Address range: [0x08000000 0x080024E8]

Address 0 ‘ 4 ‘ 8 | @ |ASC]I
0x08000000 |20003E88 080001AS 080001B1 080001B3 “»>. ©...%...°...
0x08000010 |080001B5 080001B7 080001B9 00000000 p...-...%.......
0x08000020 | 00000000 00000000 00CO0O0O |08001B1S
0x08000030 |080001BD 00000000 O08001A61 O08001C3B %.......a...;
0x08000040 | 080001C3 080001C3 080001C3 |080001C3 (A...A...
0x08000050 |080001C3 080001C3 080001C3 |080001C3 A...A...
0x08000060 | 080001C3 080001C3 0B0001C3 |080001C3 A...A...

A
A

Address: 0x08000000 w Size: 0x24E8 Data Width: 32 bits

1mf »

0x08000070 |080001C3 080001C3 080001C3 |080001C3 A...A...
0x08000080 |080001C3 080001C3 080001C3 00000000 A...A
0x08000090 | 00000000 00000000 0OCO0DOOO | 080001C3 |............ A...

<« 1 >

15:07:59 : SWD Frequency = 100 KHz. -
15:07:59 : Connection mode : Connect Under Reset.

15:07:59 : Device ID:0x433

15:07:59 : Device flash Size : 512KBytes

15:07:59 : Device family :STM32F401xD/E

15:08:02 : [Toshiba_NAMND_Flash_STM32F4.hex] opened successfully. -

15:08:06 : Memmﬂ;Emgra%medTﬂ 35 and 89ms.
15:08:06 : Verification...OK

15:08:06 : Programmed memory Checksum: 0x000E7744 .

Figure 5: Programming the board with STM32 ST-LINK Utility

Running the Demo

Open the preferred Terminal program. HTerm is used in this document and can be found in the
Terminal Software folder. Configure it as following (Note that the port is different on your
computer):

i1 HTerm 0.8.1bet =El X

File Options View HeIE
I Port COMZ5 = [R] Baud 115200~ Daa[s | sop[t | Party[none =] [TI€TS Flow control

g B = i Show newline
i Rx 9 I L ot 0= 9 f| Nawiine at LS h characters

H H i i =] |# Newline every =] |F ¢ Newiine after ... ms]|} CTS DSR RI DCD
: [W)sai [[hex [oec [an { [saveoutput [[f Mctearat 0 (37 "gRR oty o (2 7 Mlautoscrol Mshowerrors |7 (2SWe 08, o G " @ g

I Sequence Overview X - Data

Figure 6: Terminal Program configuration

By pressing Connect button on HTerm and the reset button on the controller (black one), there
will be a message displayed to show the address of the flash, also running the process of checking
bad blocks. Please note that, every memory is shipped with some bad blocks, and the bad blocks
are different from one memory to the others.

In this example, bad blocks occur at block #3, #1536, #1537, #1561, and #1789.

arrow.com | +49 (0) 6102 50300 I\.R.REVV | 9

Received Data

1 5 10

Checking for
Bad block at
Bad block at
Bad block at
Bad block at
Bad block at
Total of bad
Please press

15 20

Flash ID: 39117 w

25 30

Bad Block w

block #3 w
block #1536
block #1537
block #1561
block #1789

blocks:

user button

¥ Fd

S w

35

to start the flash test w

m

Figure 7: Running the demo 1

Then press the blue button to continue the demo. The controller will check if the current block is
bad block, then it erases the data inside the block and write new data to the first page of each

block.

Received Data

1 5 10

Suceesfully
Suceesfully
Suceesfully
Suceesfully
Suceesfully
Suceesfully
Suceesfully
Suceesfully
Suceesfully
Suceesfully
Suceesfully
Suceesfully
Suceesfully
Suceesfully
Suceesfully
Finish!!!

15 20
writing
writing
writing
writing
writing
writing
writing
writing
writing
writing
writing
writing
writing
writing
writing

to
to
to
to
to
to
to
to
to
to
to
to
to
to

25 30
first page
first page
first page
first page
first page
first page
first page
first page
first page
first page
first page
first page
first page
first page
first page

25
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of

40
block
block
block
block
block
block
block
block
block
block
block
block
block
block
block

45 50 55 &0 s 70 75 80 gs 50 s5 100 -
#2033
#2034\
$#2035%
$2036w
#2037
#2038
#2039,
#2040
#2041
#2042\
#2043,
2044w
$2045%
$2046w
$2047w

Selection (-)

1 [m

Timestamp: 09:30:42.675.5

Figure 8: Running the demo 2

Bad blocks at block number 3, 1536, 1537, 1561, 1789 are reported again during the run so they
are not overwritten.

Block #3: bad block. Move to next one '

Block $#1536: bad block. Move to next one
Block #1537: bkad block. Move to next one w

Block #1561: bad block. Move to next one w

Block #1789:

bad block. Move to next one wn

Figure 9: Running the demo 3

arrow.com | +49 (0) 6102 50300 I\ME\N | 10

Getting started from the scratch

Getting started with CubeMX

Open CubeMX and choose New Project.

In the new project window, go to Board Selector tab. In the field Type of Board, Nucleo64 is
chosen and in the MCU Series STM32F4 is picked. Finally in the Board Lists field, NUCLEO-
F401RE is chosen.

. New Project
MCU Selector | Board Selector
Board Filter
Vendor : Type of Board : MCU Series :
STMicroelectronics ~ « Nucleo64 - STM32F4 -
|| mitialize all peripherals with their default Mode
Peripherals/Connectors Selection Boards List: 4 Ttems
Peripherals/Connectors ~ Nb Max Type Reference MCU
@ (] Nucleo64 NUCLEO-F401RE STM32F401RETx
LJ Nucleo64 NUCLEO-F411RE STM32F411RETx
@ | Nucleo64 |NUCLEO-F446RE STM32F446RETX
@ | MNucleo64 |NUCLEO-F410RB STM32F410RBTX
@|Button 0
@
9| |
9| |
@ Digital O 0
9| |
0 |
]
]
]
]
@
@
@ Led 0
9| |
9| |
LJ
@ |
@ O
]
) |
@
@
9| |
9| |
@
@|Motor control connector.... | | |
OK -Cance\
= |

Figure 10: Board selection for new project

By pressing OK, a new window appears for project configuration. First thing need to be done is
cleaning the pinout. Choosing the option Pinout = Clear Pinouts

arrow.com | +49 (0) 6102 50300 I\MEVV | 11

— — — ——
© STM32CubeMX Untitled: STM32FAOLRETANDGLEO-FAOIRE N M (=[5 e
e .
File Project [Pinout] Window Help
B B |2 Undo Ctrl+Z pent 9 o O = @ < Find w @ (4 = [¥]Show user Label | (7 >
Pinout | clock 190 C st
(Iollf'!gural'l) Clear Pinouts Cirl+ P}
8 mLﬂm Ingle Mapped Signats L+
o FRE Set unused GPIOs Ctri+G
o Reset used GPIOs Alt+G
_"L Generate CSV pinout text file »
o g .
& Ay ¥ Pins/Signals Options cul+0
@ CRC = Collapse All Alt+E
° 12C/@ Disable Modes Ctri+D
Yo T Expand Al AlteX 51 [Pusheutor]
o 18! “ Zooming in Alt+1 ™e
o mS| L Bestfit Alt+B
© WL, Zooming out Alt+O
“ R
@ RTC i
@ SDI0 =
W spm1
& sP12
o sPI3
o SYS
° TIM1
A TIM2
o TIM3 |
e USART_TX 4
A\ TIMS. H
4 TIM9 I3
© TIM10 H
o TIM11 =
@ USARTL
@ USART2
© USART6 L
© USB_OTG_Fs -

Figure 11: Clearing the pinout

In the Pinout tab, go to SPI1, we configure Mode as Full-Duplex Master, and Hardware NSS
Signal as Disable

&4\, SDIO
B-® sPI1
-Mode :FuII-DupIex Master |
-Hardware NS5 Signal :Disable v:
.. o SPI2
.. [SPB

Figure 12: SPI configuration

In the TIM1 configuration, we set Clock Source as Internal Clock to activate the General purpose
timer 1

arrow.com | +49 (0) 6102 50300 I\N\ﬁ\N | 12

H-4y svs

- TIM1
----- Slave Mode :Disable v:
----- Trigger Source :Disable V:
----- Clock Source :Internal Clock v:
----- Channel1 :Disable v:
----- Channel2 :Disahle v:
----- Channel3 :Disable v:
----- Channel4 :Disahle v:
BTSSR 0is:blc -
----- Activate-Break-Input
----- Use ETR as Clearing Source
----- XOR activation

----- ["] one Pulse Mode

[H- 1 TIM2
- & TIM3

Figure 13: TIM1 configuration

Next, we activate UART by going to USART2 configuration and set Mode as Asynchronous, and
Hardware Flow Control (RS232) as Disable

e wames
H-€) USART1
Bl ® USART2
ode .Asynchronous v
ardware Flow Control (RS232) :Disable v:
“ USARTG

Figure 14: USART2 configuration

In the window on the right, configure pins PB6, PB4, PA9, PA8, PC7, and PB10 as GPIO_Output
and PC13 as GPIO_EXT13

GPIC_EXTIIZ

UpSP10_Output
L GPIO_output

20 GPIO_Dutput

xd zeavsn [
25 11ds
1S0W T1ds
NN oo

OSIW

Figure 15: Setting the pins

arrow.com | +49 (0) 6102 50300 I\N\ﬁ\N | 13

Move to Clock Configuration tab and make sure that the clock is set to 84MHz

RTC Clack Mux
HSE[Ty o] MSERTG
2 - (€
put frequency
= ' e 3] To RTC (KHz
£-1000 Kk R EN7Y
=4 HCLK to AHB bus, core,
32 To IWDG (KHz) memory and DMA (MHz)
2 KHz
1 v i
st Re System Clock Mux ! “ To Cortax System timer (MHz
Hsl
‘JI 8 |FCLK Cortex dlock (MHz)
16 MH; - SYSOLK(MHZ) AHE Prescaler| HOLK (MHz)
E APB1 paripheral clocks (MHz)
B TiFEz
APBI Timer clocks (MHz)
APB2 paripheral clocks (MHz)
Input frequency
APB2 timer clocks (MHz)
426 MHz 48MHz dlocks (MHz)
125 source Mux
PULIISCIK PUIZSOK
@
Input frequency — “ 125 clocks (MHz)
)
MCO2 source Mux
MHz
ToaSizas
(| QPLLI2SaK
e IR W
| Puax
MCO1 source Mux
b
O PE
larsE
p— g o
(11 =l lpm
i BT

Figure 16: Setting the clock

Move to Configuration tab. If we have configured everything correct, we should have the picture
as below

Middlewares

SP]:I.‘% DMA@_'_ I T]]'dl{;%b l

USART2 &, GPIO —o%,,

NVIC = »

RCS ,

Figure 17: Configuration Tab

arrow.com | +49 (0) 6102 50300 Am, | 14

We start to configure the SPI by clicking in the tab SPI1. The setting in SPI1 tab is configured as

follow

% SPI1 Configuration

«f Parameter Settings | /7 User Constants | =/ NVIC Settings | «// DMA Settings | «// GPIO Settings|

Configure the below parameters :

Search :| Search (Crti+F)

[Basic Parameters
Frame Format
Data Size
First Bit
=) Clock Parameters
Prescaler (for Baud Rate)
Clock Polarity (CPOL)
Clock Phase (CPHA)
= Advanced Parameters
CRC Calculation
NSS Signal Type

Matorola
8 Bits
MSB First

8
High
2 Edge

Disabled
Software

[Apply] [0k] [Cancel

Figure 18: Setting for SPI1

Then the USART?2 is configured as followed:

% USART2 Configuration

=)

7 Parameter Settings|| o/ User Constants | «// NVIC Settings | </ DMA Settings |« GPIO Settings|
Configure the below parameters :
Search :| Search (CrilF)
= Basic Parameters
Baud Rate 115200 Bits/s
‘Word Length 8 Bits (including Parity)
i Parity Odd i
Stop Bits 1
(= Advanced Parameters
Data Direction Receive and Transmit
|| Qver Sampling 16 Samples ‘
l Apply l [Ok] [Cancel

Figure 19: Setting for USART 2

arrow.com | +49 (0) 6102 50300 I\MEVV | 15

Here is the configuration for the timer:

@ TIM1 Configuration B

' Parameter Settings | o/’ User Constants | «// NVIC Settings | « DMA Settings

Configure the below parameters :

7) L

Search :

|=| Counter Settings

Prescaler (PSC - 16 bits value) 84
Counter Mode up
Counter Period (AutoReload Register - 16 bit... 0xFFFF
Internal Clock Division (CKD) No Division
Repetition Counter (RCR - & bits value) 0
[=| Trigger Output (TRGO) Parameters
Master/Slave Mode Disable (no sync between this TIM (Master) and its Sla...
Trigger Event Selection Reset (UG bit from TIMx_EGR)

[Apply] [ok][Cancel

Figure 20: Setting for TIM1

Finally, we go to NVIC tab to enable the interrupt for the push button.

% NVIC Configuration ﬂ

o) NVIC:l </ Code generation

Priority Group |0 bits for pre-emption priority 4 bits f... | [| Sort by Premption Priority and Sub Prority

@ @ [] Show only enabled interrupts

Search

Interrupt Table Enabled Preemption Priority Sub Priority

Non maskable interrupt

)_Hard fault interrupt

Memory management fault

Pre-fetch fault, memory access fault

Undefined instruction or illegal state

System service call via SWI instruction

Debug monitor

Pendable request for system service

Time base: System tick timer

PVD interrupt through EXTI line 16

Flash global interrupt

RCC global interrupt

TIM1 break interrupt and TIM9 global interrupt
TIM1 update interrupt and TIM10 global interrupt
TIM1 trigger and commutation interrupts and TIM11 gl...
TIMI capture compare interrupt

HEHEEEEEEEEEEEEEEE
HEHEEEEEEEEEEEEEEE

SFI1 global interrupt

Enabled Preemption Priority ¥ | Sub Priority -

[Apply H Ok H Cancel

Figure 21: Setting for NVIC

arrow.com | +49 (0) 6102 50300 I\N'_'-I\N | 16

Then we go to Project = Setting to configure the final setting for our project before generating
it.

Fi

Project§ Window Help
E EUR ST =P

| Pinoutl Clock Conﬁgurati0n| Configuration | Fower Consumption Calculator

nfiguration

Ic[g--MiddIEWa res | |
Figure 22: Project setting 1

In the Project Setting window, we name our project, choose a location to place it and, the most
important, choose the Toolchain/IDE to writing the code (in this case, Keil is used).

Project Settings ﬁ

Project Iode Generator | Advanced Settings

Project Settings

Project Name
Flash_demo_F4

Project Location
C:\MyFiles\SoftwareTeam\Technology\Flash -Arrow\¥-Nucleo\Projects

Toolchain Folder Location
C:\MyFiles\SoftwareTeam\Technology\Flash -Arrow\X-Nucleo\Projects\Flash_demo_F4 I

Toolchain [IDE
MDK-ARM V5 = Generate Under Root

Linker Settings I
Minimum Heap Size 0x200
Minimum Stack Size 0400

Mcu and Firmware Package
Mcu Reference
STM32F401RETX

Firmware Package Name and Version
STM32Cube FW_F4 V1.13.1

Ok | I Cancel

Figure 23: Project setting 2

Press Ok to close the window, then the project can be generated by choosing Project=> Generate
Code or clicking on the cog wheel button

arrow.com | +49 (0) 6102 50300 AMN | 17

File| Project Window Help
ReoBRUB & +—: 29

| Pinoutl Clock Configuration | Configuration | Power Consumption Calculator
onfiguration
= MiddleWares

Figure 24: Generate project 1

After the project is successfully generated, a window will pop up to ask for further action. From
here we can open the project in preferred IDE

Code Generation &J

lﬁ] The Code is successfully generated under C:/MyFiles/SoftwareTeam/Technology/Flash -Arrow/X-Nucleo/Projects/Flash_demao_F4

’ Open Folder l ‘?Open Project| ’ Close]

Figure 25: Generate Project 2

Editing the code

Keil is used in this guide but it can be easily tailored to other IDE.

First thing we do is adding all the necessary source file into the project, which is
TC58 FPP_CMD.c in this case. Please also remember to add the header files to the Inc folder.
All the related source and header files can be found in the Toshiba NAND_Flash Library folder.

File Edit View Project Flash Debug Peripherals Tools SVCS Window Help

==l @ | | | == | @ ussreq vpEsTA| B @ (@] e & @[[F %
& L B 2| ¥ ToshibaNAND Flas|v | K| dh B € 0 @
Project =]] maine |] TCSBFPP.CMDh |] startup stm32f401xes v x
&% Project: Toshiba_NAND_Flash_STM32F4 438 }
= #7 Toshiba NAND_Flash_STM32F4 32; [/s chock all R L
R * Check all Nand Flash Write Read *
W
= Drivers/CMSIS 441 | for(BlockNum = 0; BlockNum < FlashBlockNum; BlockNum++)
= Application/User 4420 |
0 mainc 443 /* Check if this block is wvalid */
@ stm32f4xx_hal_msp.c 444 if(BadBlock([BlockNum])
0 _stm32tanc ite 445 (] o i i o
| 0 TC58 FPP.CMD.c 446 prllﬂ.:f(Block #%d: bad block. Move to next one \n", BlockNum);
- - 447 continue;
" Drivers/STM32F4x HAL Driver as L
O Application/MDK-ARM 149 else
@ omsis 4500 |
451 //Erase block
452 flash addr = (BlockNum * FlashBlockSize):
453 CMD_BE (£lash_addr) 7
454
455 /
456 * Start to write data to first page of each block.
457 */
458 PageNum = 0:

Figure 26: Adding additional source file

First step is done, we go to the main.c and enter these lines between the /* USER CODE BEGIN
Includes */ and /* USER CODE END Includes */

arrow.com | +49 (0) 6102 50300 I\MEVV | 18

/* USER CODE BEGIN Includes */
<stdlib.h>

<string.h>

<stdio.h>

#include "TCS58 FPP CMD.h"|

/* USER CODE END Includes */

Figure 27: Include and define section

Those codes include all the headers that needed. Next, we add all the needed variables to the
USER CODE BEGIN PV section.

/* USER CODE BEGIN PV */

/* Private variables ——————mmmmmmmmmm ®/
/* Enable printf on EKeil and IAR*/
#ifdef _ GNUC__

efine PUTCHAR PROTOTYPE int io putchar(int ch)

efine PUTCHAR PROTOTYPE int fputc(int ch, FILE *f

#endif /* GNUC */

TRANS_BAD LENGTH 4224
FLASH TARGET_ADDR 0x00000000
Error_inc(x) x =x + 1;

st_regl = 0;

memory addr [TRANS_BAD LENGTH];
memory addr cmp[TRANS BAD LENGTH]:
memory addr t[TRANS BAD LENGTH];

5 memory addr t cmp[TRANS BAD LENGTH]
uint8 t pTxData[lé]l;

uint8 t pRxData[l6];

uint8_t BadBlock[FlashBlockNum];

char buff[50];

uintlé_t BlockNum;
uintlé t PageNum;

uintlé_t i=0;

uintlé_t col address = 0;
uintlé_t BadBlockTot = 0;
uintlé_t BadBlockCnt;
uintlé_t flash id = 0;
uintlé error cnt = 0;

uint32_t PageARddress;
uint32_t BlockAddress;
uint32_t FlashAddressTest;
uint32_t FlashAddressShiftl;
uint32 t FlashAddressshift2;
uint32 t flash addr:

HAL StatusTypeDef status = HAL OK;

ReturnMsg message = Flash_Success;
/* USER CODE END PV */

Figure 28: Private variables section

Then we add the code for the function prototype to the USER CODE BEGIN PFP section. The
names of the functions self-explaining their purposes. FlashTest tests the operation of the flash
memory and SearchBadBlock looks for the bad block in the flash.

arrow.com | +49 (0) 6102 50300 I\MEW | 19

/* USER CODE BEGIN PFP */

/* Private function prototypes —-—-—————————————— %
void SearchBadBlock(void);

void FlashTest (void);

/* USER CODE END PFP */

Figure 29: Function prototype section

Inside the main function, we navigate to the USER CODE BEGIN 2 section and add this block.

/* USER CODE BEGIN 2 */
__HAL_DBGMCU_FREEZE_TIMI():
HAL TIM Base Start IT(&htiml);
Initial Spi();

Figure 30: Peripherals initialize

The block above initializes the timer and SPI and also starts the timer. After that, we add the
following code to the application. This block reads the address of the flash memory and compares
it with the pre-defined one. If there is a mismatch, the program will print the error message and
go to the Error_Handler function, which is an infinite loop. If there is no error, it will run the
SearchBadBlock function.

/* Read flash id */
CMD RDID((uintlé*)e&flash id):

/* Read flash id */
CMD RDID((uintlé*)sflash id):

/* Compare to expected value */
if (flash id != FlashID)
{
Error_inc(error_cnt);
printf ("Wrong Flash ID \n");
Error Handler();
}
printf("Flash ID: %d \n", flash_id);

if (lerror_cnt)
{
printf ("Checking for Bad Block \n");
SearchBadBlock();
printf("Total of bad blocks: %d \n", BadBlockTot):;
}

printf("Please press user button to start the flash test ‘\n");
/* USER CODE END 2 */

Figure 31: Check ID and check bad blocks

Scrolling down to the USER CODE BEGIN 4, we add this block to the program. This block allows
us to use the printf function to write the data to the UART communication.

arrow.com | +49 (0) 6102 50300 I\ME\N | 20

/* USER CODE BEGIN 4 %/

/* Enable printf on System Workbench*/

int write(int file, char *ptr, int len)

{
HAL UARRT Transmit(&huart2, (uint8 t *)ptr,
return len;

}

/* Enable printf on IAR or Keil*/
PUTCHAR_PROTOTYPE
{
HAL UART Transmit(&huart2, (uint8_ t *)&ch,
return ch;

}

len, 10);

1, 0XFFEF);

Figure 32: Enable using printf

Next thing we add is the body of the function SearchBadBlock. According to the datasheet,
information about the bad block is stored in column 0 or 4096 of the first and second page of the
block. Therefore, this function scans through the column 4096 of the first page of each block and
checks if they are equal to OxFF. If it is not equal to OXFF then we have a bad block.

void SearchBadBlock (void)

{

BadBlockCnt = 0;
for (BadBlockCnt = 0; BadBlockCnt < FlashBlockMNum; BadBlockCnt++)
{

/* Check First Byte Spare Area of Page(Block N */

flash addr = BadBlockCnt * FlashBlockSize;
FlashhddressTezt = (BadBlockCnt << &)
FlashiddressShiftl = (flash_addr >»> 12);

#if 0

if (flash_addr >= 0x10000000)
{

BadBlock [BadBlockCnt] = 0O;
}

fendif

BadBlock[BadBlockCnt] = 0;

/* Read flash memory data to memory buffer */
message = CMD READ(flash addr);
if (message != Flash Success)
{
while (1)

printf ("Read error \n");
t
col address = 07
memset (memory addr, 0, TRANS BAD LENGTH) ;
message = CMD READ CACHE(col_address, memory addr,
if (message != Flash_Success)
{
while (1) ;
t

if (memory addr[FlashPageSize + 1] != OxFF)
{
BadBlockTot++;
BadBlock [BadBlockCnt] = 1;
printf ("Bad block at block #%d ‘\n", BadBlockCnt);
continue;

TRANS BAD LENGTH, 0);

Figure 33: CheckBadBlock function

arrow.com | +49 (0) 6102 50300 I\MEW | 21

After that we add the body of the function FlashTest. The main task of this function is erasing the
block, writing data into the first page of the first block, then reading the data again and comparing
them with the data it has written before to see if there is a match.

void FlashTest (void)
{
/* Clear the block protection bit*/
CMD_GET_ FEATURE(Oxal, &st_regl);
if (st_regl & 0x38)
{
CMD_SET_FEATURE(0Oxal, (=st_regl&O=B87));
}

/* Check all Nand Flash Write Read */
for (BlockNum = 0; BlockNum < FlashBlockNum; BlockNum++)
{
/* Check if this block is wvalid */
if (BadBlock[BlockNum])
{
printf ("Block #%d: bad block. Move to next one ‘\n", BlockNum);
continue;
}
else
{
//Erase block
flash_addr = (BlockNum * FlashBlockSize);
CMD_BE (flash_addr);

/e
* Start to write data to first page of each block.
v f
PageNum = 0;
col address = 0;
flash_addr = (BlockNum * FlashBlockSize) + (PageNum * FlashPageSize);

/* Read flash memory data to memory b
CMD_READ (flash addr);
CMD READ CACHE (col_address, memory_addr_t_cmp, FlashPageSize, 0);
iE{memory_addr_t_cmp[Q] I= 0xFF)
{

memory_addr t_cmp[0] = 0;

t

fer */

/* Write ones pages at time */

memory_addr_t[0] = (BlockNum & OxFF);
memory_addr t[1] = ((BlockNum >> 2) & OxFF);
memory_ addr t[2] = PageNum;
memory_addr t[3] = 0x0F;
for{(i = 4; i < FlashPageSize; i+=2)
{
memory_addr_t[i] = (1 & OxFF);
memory addr t[i+l] = ((i >> 8) & OxFF);

}

/* Program data to flash memory */
CMD PP LOAD(col_ address, memory addr t, FlashPageSize, 0);
CMD PROGRAM EXEC (flash addr);

/* Read flash memory data to memory buffer */
CMD_REZD(flash_addr);
CMD_READ CACHE (col_address, memory_addr_t_cmp, FlashPageSize, 0);

/% Compare Data Write with data Readed */
if (memcmp (memory addr t, memory addr t cmp, FlashPageSize) != 0)
{
Error_inc(error_cnt);
printf ("Error writing to first page of block #%d\n", BlockNum);
1
else
{
printf("Suceesfully writing to first page of block #%d\n", BlockNum);
}
t
}
printf("Finish!!! \n");

}
Figure 34: FlashTest function

arrow.com | +49 (0) 6102 50300 I\ME\N | 22

From the code block above, the first thing the function FlashTest does is clearing the protection
bit. Then it will run through block by block, check if the block is bad block. If current block is not a
bad block, the function will generate random data, write it to the first page of the block, read the
data again and compare with the original one. If the data is matching, the function will move to
the next block. If the data is not matching, it will prompt an error message.

Finally we add the call back function for the push button. Whenever the button is pressed, the call
back function calls the FlashTest.

void HAL GPIO EXTI Callback(uintlé t GPIC Pin)
1

FlashTest () ;
}

Figure 35: Call back function for push button

Now we can build our program, download it into the board and our application is ready to run.

L] C\MyfFiles L Arrow\Project\Toshiba_NAND_Flas!
File Edit View Project Flash Debug Peripherals Tools SVCS Window Help
JH§| , "“1 |<- |W |;.§;,§ ‘LB memory_addr Mj§|@|0 @&|‘)\
& e oshiba_NAND_FlasM K| dD e od
Project LA _] main.c |_] TCS8_FPP.CMD.h | startup_stm32f401xes
=8 Project: Toshiba_NAND_Flash_STM32F4 424 BadBlock[BadBlockCnt] = 1;
2 &5 Toshiba_NAND,_Flash STM32F4 425 prixﬂl:,f("Ead block at block #%d \n", BadBlockCnt);
426 continue;
= Drivers/CMSIS 427 1
2 5 Application/User 428 }

425 |}

@ main.
y main.c 430

Figure 36: Build and Download

arrow.com | +49 (0) 6102 50300 I\ME\N | 23

THE END

arrow.com | +49 (0) 6102 50300 I\ME\N | 24

